[1] | Elahi, N., Kamali, M. and Baghersad, M.H. (2018) Recent Biomedical Applications of Gold Nanoparticles: A Review. Talanta, 184, 537-556. https://doi.org/10.1016/j.talanta.2018.02.088 |
[2] | Mayer, K.M. and Hafner, J.H. (2011) Localized Surface Plasmon Resonance Sensors. Chemical Reviews, 111, 3828-3857. https://doi.org/10.1021/cr100313v |
[3] | Zhou, X., Liu, R., Qin, S., et al. (2016) Current Status and Future Direc-tions of Nanoparticulate Strategy for Cancer Immunotherapy. Current Drug Metabolism, 17, 755-762. https://doi.org/10.2174/1389200217666160714095722 |
[4] | Chen, Y., Xianyu, Y. and Jiang, X. (2017) Surface Modification of Gold Nanoparticles with Small Molecules for Biochemical Analysis. Accounts of Chemical Research, 50, 310-319. https://doi.org/10.1021/acs.accounts.6b00506 |
[5] | Alex, S. and Tiwari, A. (2015) Functionalized Gold Nanoparticles: Synthesis, Properties and Applications—A Review. Journal of Nanoscience and Nanotechnology, 15, 1869-1894. https://doi.org/10.1166/jnn.2015.9718 |
[6] | Qian, H., Zhu, M., Wu, Z. and Jin, R.C. (2012) Quantum Sized Gold Nanoclusters with Atomic Precision. Accounts of Chemical Research, 45, 1470-1479. https://doi.org/10.1021/ar200331z |
[7] | Yuan, Q., Wang, Y., Zhao, L., et al. (2016) Peptide Protected Gold Clus-ters: Chemical Synthesis and Biomedical Applications. Nanoscale, 8, 12095-12104. https://doi.org/10.1039/C6NR02750D |
[8] | Chen, X., Ren, X. and Gao, X. (2022) Peptide or Protein-Protected Metal Nanoclusters for Therapeutic Application. Chinese Journal of Chemistry, 40, 267-274. https://doi.org/10.1002/cjoc.202100523 |
[9] | Tabatabaei, M.S., Islam, R. and Ahmed, M. (2021) Applications of Gold Nanoparticles in ELISA, PCR, and Immuno-PCR Assays: A Review. Analytica Chimica Acta, 1143, 250-266. https://doi.org/10.1016/j.aca.2020.08.030 |
[10] | Kesharwani, P., Ma, R., Sang, L., et al. (2023) Gold Nanoparticles and Gold Nanorods in the Landscape of Cancer Therapy. Molecular Cancer, 22, Article No. 98. https://doi.org/10.1186/s12943-023-01798-8 |
[11] | Kumar, A., Zhang, X. and Liang, X.J. (2013) Gold Nanoparti-cles: Emerging Paradigm for Targeted Drug Delivery System. Biotechnology Advances, 31, 593-606. https://doi.org/10.1016/j.biotechadv.2012.10.002 |
[12] | Pasparakis, G. (2022) Recent Developments in the Use of Gold and Silver Nanoparticles in Biomedicine. Nanomedicine and Nanobiotechnology, 14, e1817. https://doi.org/10.1002/wnan.1817 |
[13] | Dasgupta, N. and Ranjan, S. (2018) An Introduction to Food Grade Nanoemulsions. Springer, Singapore. https://doi.org/10.1007/978-981-10-6986-4 |
[14] | Rasmi, Y., Kırboğa, K.K., Khan, J., et al. (2023) Gold Nanoparti-cle-Based Strategies against SARS-CoV-2: A Review. Reviews on Advanced Materials Science, 62, Article ID: 20230105. https://doi.org/10.1515/rams-2023-0105 |
[15] | Jans, H. and Huo, Q. (2012) Gold Nanoparticle-Enabled Biological and Chemical Detection and Analysis. Chemical Society Reviews, 41, 2849-2866. https://doi.org/10.1039/C1CS15280G |
[16] | Draz, M.S. and Shafiee, H. (2018) Applications of Gold Nanoparticles in Virus Detection. Theranostics, 8, 1985-2017. https://doi.org/10.7150/thno.23856 |
[17] | Wang, J., Drelich, A.J., Hopkins, C.M., et al. (2022) Gold Nanoparticles in Virus Detection: Recent Advances and Potential Considerations for SARS-CoV-2 Testing Development. Nanomedi-cine and Nanobiotechnology, 14, e1754. https://doi.org/10.1002/wnan.1754 |
[18] | Li, H. and Rothberg, L. (2004) Colorimetric Detection of DNA Sequences Based on Electrostatic Interactions with Unmodified Gold Nanoparticles. Proceedings of the National Academy of Sci-ences of the United States of America, 101, 14036-14039. https://doi.org/10.1073/pnas.0406115101 |
[19] | Shawky, S.M., Awad, A.M., Allam, W., et al. (2017) Gold Aggregating Gold: A Novel Nanoparticle Biosensor Approach for the Direct Quantification of Hepatitis C Virus RNA in Clinical Samples. Biosensors and Bioelectronics, 92, 349-356. https://doi.org/10.1016/j.bios.2016.11.001 |
[20] | Lim, J., Nam, J., Yang, S., et al. (2015) Identification of Newly Emerging Influenza Viruses by Surface-Enhanced Raman Spectroscopy. Analytical Chemistry, 87, 11652-11659. https://doi.org/10.1021/acs.analchem.5b02661 |
[21] | Zhang, H., Liu, L., Li, C.W., et al. (2011) Multien-zyme-Nanoparticles Amplification for Sensitive Virus Genotyping in Microfluidic Microbeads Array Using Au Nano-particle Probes and Quantum Dots as Labels. Biosensors and Bioelectronics, 29, 89-96. https://doi.org/10.1016/j.bios.2011.07.074 |
[22] | Wang, H., Feng, N., Yang, S., et al. (2010) A Rapid Immuno-chromatographic Test Strip for Detecting Rabies Virus Antibody. Journal of Virological Methods, 170, 80-85. https://doi.org/10.1016/j.jviromet.2010.09.002 |
[23] | Huang, C., Wen, T., Shi, F.J., et al. (2020) Rapid Detection of IgM Antibodies against the SARS-CoV-2 Virus via Colloidal Gold Nanoparticle-Based Lateral-Flow Assay. ACS Ome-ga, 5, 12550-12556. https://doi.org/10.1021/acsomega.0c01554 |
[24] | Kim, J., Oh, S.Y., Shukla, S., et al. (2018) Heteroassembled Gold Nanoparticles with Sandwich-Immunoassay LSPR Chip Format for Rapid and Sensitive Detection of Hepatitis B Virus Surface Antigen (HBsAg). Biosensors and Bioelectronics, 107, 118-122. https://doi.org/10.1016/j.bios.2018.02.019 |
[25] | Kurdekar, A.D., Avinash Chunduri, L.A., Manohar, C.S., et al. (2018) Streptavidin-Conjugated Gold Nanoclusters as Ultrasensitive Fluorescent Sensors for Early Diagnosis of HIV Infection. Science Advances, 4, eaar6280. https://doi.org/10.1126/sciadv.aar6280 |
[26] | Ventura, B.D., Cennamo, M., Minopoli, A., et al. (2020) Colorimetric Test for Fast Detection of SARS-CoV-2 in Nasal and Throat Swabs. ACS Sensors, 5, 3043-3048. https://doi.org/10.1021/acssensors.0c01742 |
[27] | Armesto, M., Charconnet, M., Marimón, J.M., et al. (2023) Vali-dation of Rapid and Economic Colorimetric Nanoparticle Assay for SARS-CoV-2 RNA Detection in Saliva and Naso-pharyngeal Swabs. Biosensors, 13, Article 275. https://doi.org/10.3390/bios13020275 |
[28] | Trépo, C., Chan, H.L.Y. and Lok, A. (2014) Hepatitis B Virus Infec-tion. Lancet, 384, 2053-2063. https://doi.org/10.1016/S0140-6736(14)60220-8 |
[29] | DeHaan, E., McGowan, J.P., Fine, S.M., et al. (2022) PEP to Prevent HIV Infection. Johns Hopkins University, Baltimore. |
[30] | Kurdekar, A., Chunduri, L.A.A., Bulagonda, E.P., et al. (2016) Comparative Performance Evaluation of Carbon Dot-Based Paper Immunoassay on Whatman Filter Paper and Nitrocellulose Paper in the Detection of HIV Infection. Microfluidics and Nanofluidics, 20, Article No. 99. https://doi.org/10.1007/s10404-016-1763-9 |
[31] | Jain, P.K., Huang, W. and El-Sayed, M.A. (2007) On the Uni-versal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equa-tion. Nano Letters, 7, 2080-2088. https://doi.org/10.1021/nl071008a |
[32] | Han, M.S., Byun, J.H., Cho, Y. and Rim, J.H. (2021) RT-PCR for SARS-CoV-2: Quantitative versus Qualitative. Lancet Infectious Diseases, 21, 165. https://doi.org/10.1016/S1473-3099(20)30424-2 |
[33] | Pashine, A., Valiante, N.M. and Ulmer, J.B. (2005) Target-ing the Innate Immune Response with Improved Vaccine Adjuvants. Nature Medicine, 11, S63-S68. https://doi.org/10.1038/nm1210 |
[34] | Wilson-Welder, J.H., Torres, M.P., Kipper, M.J., et al. (2009) Vaccine Adju-vants: Current Challenges and Future Approaches. Journal of Pharmaceutical Sciences, 98, 1278-1316. https://doi.org/10.1002/jps.21523 |
[35] | Shi, S., Zhu, H., Xia, X., et al. (2019) Vaccine Adjuvants: Understanding the Structure and Mechanism of Adjuvanticity. Vaccine, 37, 3167-3178. https://doi.org/10.1016/j.vaccine.2019.04.055 |
[36] | Dykman, L.A. and Khlebtsov, N.G. (2017) Immunological Properties of Gold Nanoparticles. Chemical Science, 8, 1719-1735. https://doi.org/10.1039/C6SC03631G |
[37] | Liu, Y., Crawford, B.M. and Vo-Dinh, T. (2018) Gold Nanoparticles-Mediated Photothermal Therapy and Immunotherapy. Immunotherapy, 10, 1175-1188. https://doi.org/10.2217/imt-2018-0029 |
[38] | Salazar-González, J.A., Gonzá-lez-Ortega, O. and Rosales-Mendoza, S. (2015) Gold Nanoparticles and Vaccine Development. Expert Review of Vac-cines, 14, 1197-1211. https://doi.org/10.1586/14760584.2015.1064772 |
[39] | De Almeida, R.R., Paim, B., De Oliveira, S.A., et al. (2017) Dengue Hemorrhagic Fever: A State-of-the-Art Review Focused in Pulmonary Involvement. Lung, 195, 389-395. https://doi.org/10.1007/s00408-017-0021-6 |
[40] | Bhatt, S., Gething, P.W., Brady, O.J., et al. (2013) The Global Distribution and Burden of Dengue. Nature, 496, 504-507. https://doi.org/10.1038/nature12060 |
[41] | Wahala, W.M.P.B., Kraus, A.A., Haymore, L.B., et al. (2009) Dengue Virus Neutralization by Human Immune Sera: Role of Envelope Protein Domain III-Reactive Antibody. Virology, 392, 103-113. https://doi.org/10.1016/j.virol.2009.06.037 |
[42] | Fahimi, H., Mohammadipour, M., Haddad Kashani, H., et al. (2018) Dengue Viruses and Promising Envelope Protein Domain III-Based Vaccines. Applied Microbiology and Bio-technology, 102, 2977-2996. https://doi.org/10.1007/s00253-018-8822-y |
[43] | Villar, L., Dayan, G.H., Arredondo-García, J.L., et al. (2015) Ef-ficacy of a Tetravalent Dengue Vaccine in Children in Latin America. New England Journal of Medicine, 372, 113-123. https://doi.org/10.1056/NEJMoa1411037 |
[44] | Quach, Q.H., Ang, S.K., Chu, J.H.J. and Kah, J.C.Y. (2018) Size-Dependent Neutralizing Activity of Gold Nanoparticle-Based Subunit Vaccine against Dengue Virus. Acta Bio-materialia, 78, 224-235. https://doi.org/10.1016/j.actbio.2018.08.011 |
[45] | Halstead, S.B. (2017) Dengvaxia Sensitizes Seronegatives to Vaccine Enhanced Disease Regardless of Age. Vaccine, 35, 6355-6358. https://doi.org/10.1016/j.vaccine.2017.09.089 |
[46] | Awadasseid, A., Wu, Y., Tanaka, Y. and Zhang, W. (2021) Current Advances in the Development of SARS-CoV-2 Vaccines. International Journal of Biological Sciences, 17, 8-19. https://doi.org/10.7150/ijbs.52569 |
[47] | Chen, D.Y., Chin, C.V., Kenney, D., et al. (2023) Spike and Nsp6 Are Key Determinants of SARS-CoV-2 Omicron BA.1 Attenuation. Nature, 615, 143-150. https://doi.org/10.1038/s41586-023-05697-2 |
[48] | Aguilar-Bretones, M., Fouchier, R.A., Koopmans, M.P., et al. (2023) Impact of Antigenic Evolution and Original Antigenic Sin on SARS-CoV-2 Immunity. Journal of Clinical Inves-tigation, 133, e162192. https://doi.org/10.1172/JCI162192 |
[49] | Fan, B., Gu, J., Deng, B., et al. (2023) Positively Charged-Amylose-Entangled Au-Nanoparticles Acting as Protein Carriers and Potential Adjuvants to SARS-CoV-2 Subunit Vaccines. ACS Applied Materials & Interfaces, 15, 29982-29997. https://doi.org/10.1021/acsami.3c05295 |
[50] | Bayani, F., Hashkavaei, N.S., Arjmand, S., et al. (2023) An Overview of the Vaccine Platforms to Combat COVID-19 with a Focus on the Subunit Vaccines. Progress in Biophysics and Mo-lecular Biology, 178, 32-49. https://doi.org/10.1016/j.pbiomolbio.2023.02.004 |
[51] | Niikura, K., Matsunaga, T., Suzuki, T., et al. (2013) Gold Nanoparticles as a Vaccine Platform: Influence of Size and Shape on Immunological Responses in Vitro and in Vivo. ACS Nano, 7, 3926-3938. https://doi.org/10.1021/nn3057005 |
[52] | Polack, F.P., Thomas, S.J., Kitchin, N., et al. (2020) Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. New England Journal of Medicine, 383, 2603-2615. https://doi.org/10.1056/NEJMoa2034577 |
[53] | Tanriover, M.D., Doğanay, H.L., Akova, M., et al. (2021) Efficacy and Safety of an Inactivated Whole-Virion SARS-CoV-2 Vaccine (CoronaVac): Interim Results of a Double-Blind, Randomised, Placebo-Controlled, Phase 3 Trial in Turkey. Lancet, 398, 213-222. https://doi.org/10.1016/S0140-6736(21)01429-X |
[54] | Knoll, M.D. and Wonodi, C. (2021) Oxford-AstraZeneca COVID-19 Vaccine Efficacy. Lancet, 397, 72-74. https://doi.org/10.1016/S0140-6736(20)32623-4 |
[55] | Song, J.Y., Choi, W.S., Heo, J.Y., et al. (2022) Safety and Immunogenicity of a SARS-CoV-2 Recombinant Protein Nanoparticle Vaccine (GBP510) Adjuvanted with AS03: A Randomised, Placebo-Controlled, Observer-Blinded Phase 1/2 Trial. eClinicalMedicine, 51, Article ID: 101569. https://doi.org/10.1016/j.eclinm.2022.101569 |
[56] | Dreaden, E.C., Austin, L.A., Mackey, M.A. and El-Sayed, M.A. (2012) Size Matters: Gold Nanoparticles in Targeted Cancer Drug Delivery. Therapeutic Delivery, 3, 457-478. https://doi.org/10.4155/tde.12.21 |
[57] | Goddard, Z.R., Marín, M.J., Russell, D.A. and Searcey, M. (2020) Active Targeting of Gold Nanoparticles as Cancer Therapeutics. Chemical Society Reviews, 49, 8774-8789. https://doi.org/10.1039/D0CS01121E |
[58] | Yazdanpanah, Y., Fagard, C., Descamps, D., et al. (2009) High Rate of Virologic Suppression with Raltegravir plus Etravirine and Darunavir/Ritonavir among Treatment-Experienced Patients Infected with Multidrug-Resistant HIV: Results of the ANRS 139 TRIO Trial. Clinical Infectious Diseases, 49, 1441-1449. https://doi.org/10.1086/630210 |
[59] | Chun, T.W., Moir, S. and Fauci, A.S. (2015) HIV Reservoirs as Obstacles and Opportunities for an HIV Cure. Nature Immunology, 16, 584-589. https://doi.org/10.1038/ni.3152 |
[60] | Garrido, C., Simpson, C.A., Dahl, N.P., et al. (2015) Gold Nanoparticles to Improve HIV Drug Delivery. Future Medicinal Chemistry, 7, 1097-1107. https://doi.org/10.4155/fmc.15.57 |
[61] | Kalimuthu, K., Lubin, B.C., Bazylevich, A., et al. (2018) Gold Nanoparti-cles Stabilize Peptide-Drug-Conjugates for Sustained Targeted Drug Delivery to Cancer Cells. Journal of Nanobiotech-nology, 16, Article No. 34. https://doi.org/10.1186/s12951-018-0362-1 |
[62] | Fratoddi, I., Venditti, I., Battocchio, C., et al. (2019) Highly Hy-drophilic Gold Nanoparticles as Carrier for Anticancer Copper(I) Complexes: Loading and Release Studies for Biomedi-cal Applications. Nanomaterials, 9, Article 772. https://doi.org/10.3390/nano9050772 |
[63] | Fotooh Abadi, L., Kumar, P., Paknikar, K., et al. (2023) Tenofo-vir-Tethered Gold Nanoparticles as a Novel Multifunctional Long-Acting Anti-HIV Therapy to Overcome Deficient Drug Delivery-: An in Vivo Proof of Concept. Journal of Nanobiotechnology, 21, Article No. 19. https://doi.org/10.1186/s12951-022-01750-w |
[64] | Bowman, M.C., Ballard, T.E., Ackerson, C.J., et al. (2008) In-hibition of HIV Fusion with Multivalent Gold Nanoparticles. Journal of the American Chemical Society, 130, 6896-6897. https://doi.org/10.1021/ja710321g |
[65] | Li, F., Huang, Q., Zhou, Z., et al. (2023) Gold Nanoparticles Combat Enveloped RNA Virus by Affecting Organelle Dynamics. Signal Transduction and Targeted Therapy, 8, Article No. 285. https://doi.org/10.1038/s41392-023-01562-w |
[66] | Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660 |
[67] | Jit, M., Prem, K., Benard, E. and Brisson, M. (2021) From Cervical Cancer Elimination to Eradication of Vaccine-Type Human Papillomavirus: Feasibility, Public Health Strategies and Cost-Effectiveness. Preventive Medicine, 144, Article ID: 106354. https://doi.org/10.1016/j.ypmed.2020.106354 |
[68] | Valencia-Reséndiz, D.G., Villegas, A., Bahena, D., et al. (2022) Non-Functionalized Gold Nanoparticles Inhibit Human Papillomavirus (HPV) Infection. International Journal of Molec-ular Sciences, 23, Article 7552. https://doi.org/10.3390/ijms23147552 |
[69] | Giroglou, T., Florin, L., Schäfer, F., et al. (2001) Human Papilloma-virus Infection Requires Cell Surface Heparan Sulfate. Journal of Virology, 75, 1565-1570. https://doi.org/10.1128/JVI.75.3.1565-1570.2001 |
[70] | Yan, F.F. and Gao, F. (2021) An Overview of Potential In-hibitors Targeting Non-Structural Proteins 3 (PLpro and Mac1) and 5 (3CLpro/Mpro) of SARS-CoV-2. Computational and Structural Biotechnology Journal, 19, 4868-4883. https://doi.org/10.1016/j.csbj.2021.08.036 |
[71] | Su, H., Zhou, F., Huang, Z., et al. (2021) Molecular Insights into Small-Molecule Drug Discovery for SARS-CoV-2. Angewandte Chemie, 60, 9789-9802. https://doi.org/10.1002/anie.202008835 |
[72] | He, Z., Ye, F., Zhang, C., et al. (2022) A Comparison of Remdesivir versus Gold Cluster in COVID-19 Animal Model: A Better Therapeutic Outcome of Gold Cluster. Nano Today, 44, Ar-ticle ID: 101468. https://doi.org/10.1016/j.nantod.2022.101468 |
[73] | Mehta, P., McAuley, D.F., Brown, M., et al. (2020) COVID-19: Consider Cytokine Storm Syndromes and Immunosuppression. Lancet, 395, 1033-1034. https://doi.org/10.1016/S0140-6736(20)30628-0 |
[74] | Lv, T., Cao, W. and Li, T. (2021) HIV-Related Immune Ac-tivation and Inflammation: Current Understanding and Strategies. Journal of Immunology Research, 2021, Article ID: 7316456. https://doi.org/10.1155/2021/7316456 |
[75] | Yang, G., Wan, P., Zhang, Y., et al. (2022) Innate Immunity, Inflammation, and Intervention in HBV Infection. Viruses, 14, Article 2275. https://doi.org/10.3390/v14102275 |
[76] | Yuan, Q., Gao, F., Yao, Y., et al. (2019) Gold Clusters Prevent Inflamma-tion-Induced Bone Erosion through Inhibiting the Activation of NF-κB Pathway. Theranostics, 9, 1825-1836. https://doi.org/10.7150/thno.31893 |
[77] | Liu, Y., Meng, C., Li, Y., et al. (2023) Peptide-Protected Gold Nanoclus-ters Efficiently Ameliorate Acute Contact Dermatitis and Psoriasis via Repressing the TNF-α/NF-κB/IL-17A Axis in Keratinocytes. Nanomaterials, 13, Article 662. https://doi.org/10.3390/nano13040662 |
[78] | Yañez-Aulestia, A., Gupta, N.K., Hernández, M., et al. (2022) Gold Nanoparticles: Current and Upcoming Biomedical Applications in Sens-ing, Drug, and Gene Delivery. Chemical Communications, 58, 10886-10895. https://doi.org/10.1039/D2CC04826D |