[1] | Phuoc, P.H., Viet, N.N., Chien, N.V., et al. (2023) Comparative Study of CuO/Co3O4 External and CuO-Co3O4 Internal Heterojunctions: Do These Factors Always Enhance Gas-Sensing Performance? Sensors and Actuators B: Chemical, 384, Article ID: 133620. https://doi.org/10.1016/j.snb.2023.133620 |
[2] | Sharma, B., Karuppasamy, K., Srivastava, A.K., Alfantazi, A. and Sharma, A. (2023) Highly Sensitive and Selective Nanoengineered PtO2-BNNT Heterostructures for Ppb Level Ammonia Gas Sensing. Sensors and Actuators B: Chemical, 400, Article ID: 134818. https://doi.org/10.1016/j.snb.2023.134818 |
[3] | Huang, D.D., Li, H.R., Liu, W.N., Chen, Y.W., Wang, W.J., Tan, X., et al. (2023) Coupling Interface Design of Metal Oxide Heterostructures Derived from MXene@MOFs Hybrids for High-Sensitivity Acetone Sensor. Sensors and Actuators B: Chemical, 383, Article ID: 133594. https://doi.org/10.1016/j.snb.2023.133594 |
[4] | Li, G.D., Shen, Y.B., Zhao, S.K., Li, A., Zhao, T.T., Tang, C., et al. (2023) Detection of Ppm-Level H2 via RGO-SnO2-ZnO Nanocomposites: Considering Compositional Matching in Designing Heterostructured Gas-Sensing Materials. Sensors and Actuators B: Chemical, 396, Article ID: 134560. https://doi.org/10.1016/j.snb.2023.134560 |
[5] | Zhao, H.Y., Sun, J.H., Liu, J.M., Zhang, H.W., He, H.G., et al. (2023) UV-Triggered Carrier Transport Regulation of Fibrous NiO/SnO2 Heterostructures for Triethylamine Detection. Chemical Engineering Journal, 476, Article ID: 146687. https://doi.org/10.1016/j.cej.2023.146687 |
[6] | Liu, S.W., Wang, M.Y., Ge, C.X., Lei, S.Y., Hussain, S., Wang, M.S., Qiao, G.J. and Liu, G.W. (2022) Enhanced Room-Temperature NO2 Sensing Performance of SnO2/Ti3C2 Composite with Double Heterojunctions by Controlling Co-Exposed {221} and {110} Facets of SnO2, Sensors and Actuators B: Chemical, 365, Article ID: 131919. https://doi.org/10.1016/j.snb.2022.131919 |
[7] | Cheng, L.Y., Li, Y.W., Cao, G.H., Sun, G., Cao, J.L. and Wang, Y. (2022) Boosting TEA Sensing Performance of ZnO Porous Hollow Spheres via in Situ Construction of ZnS-ZnO Heterojunction. Sensors and Actuators B: Chemical, 364, Article ID: 131883. https://doi.org/10.1016/j.snb.2022.131883 |
[8] | Guo, W.W., Huang, L.L., Zhao, B.Y., Gao, X., Fan, Z.H., Liu, X.Y., He, Y.Z. and Zhang, J. (2021) Synthesis of the ZnFe2O4/ZnSnO3 Nanocomposite and Enhanced Gas Sensing Performance to Acetone. Sensors and Actuators B: Chemical, 346, Article ID: 130524. https://doi.org/10.1016/j.snb.2021.130524 |
[9] | Sharma, B., Sharma, A. and Myung, J. (2021) Highly Selective Detection of Acetone by TiO2-SnO2 Heterostructures for Environmental Biomarkers of Diabetes. Sensors and Actuators B: Chemical, 349, Article ID: 130733. https://doi.org/10.1016/j.snb.2021.130733 |
[10] | Yin, G.L., Sun, J.W., Zhang, F., Yu, W.W., Peng, F., Sun, Y., et al. (2019) Enhanced Gas Selectivity Induced by Surface Active Oxygen in SnO/SnO2 Heterojunction Structures at Different Temperatures. RSC Advances, 9, 1903-1908. https://doi.org/10.1039/C8RA09965K |
[11] | Chen, K., Jiang, Y., Tao, W., Wang, T.S., Liu, F.M., Wang, C.G., Yan, X., Lu, G.Y. and Sun, P. (2023) MOF Structure Engineering to Synthesize Core-Shell Heterostructures with Controllable Shell Layer Thickness: Regulating Gas Selectivity and Sensitivity. Sensors and Actuators B: Chemical, 378, Article ID: 133117. https://doi.org/10.1016/j.snb.2022.133117 |
[12] | Wang, T.T., Liu, J.Y., Zhang, Y.L., Liang, Q.H., Wu, R.Z., et al. (2022) Bifunctional Gas Sensor Based on Bi2S3/SnS2 Heterostructures with Improved Selectivity through Visible Light Modulation. Journal of Materials Chemistry A, 10, 4306-4315. https://doi.org/10.1039/D1TA10461F |
[13] | Demir, K.Ç. (2020) Corrosion Behavior of Electrodeposited WO3 Thin Films. Ceramics International, 46, 4358-4364. https://doi.org/10.1016/j.ceramint.2019.10.159 |
[14] | Thongpan, W., Louloudakis, D., Pooseekheaw, P., et al. (2019) Porous CuWO4/WO3 Composite Films with Improved Electrochromic Properties Prepared by Sparking Method. Materials Letters, 257, Article ID: 126747. https://doi.org/10.1016/j.matlet.2019.126747 |
[15] | Wang, T., Fan, X.L., Gao, B., Jiang, C., Li, Y., Li, P., Zhang, S.T., Huang, X.L. and He, J.P. (2021) Self-Assembled Urchin-Like CuWO4/WO3 Heterojunction Nanoarrays as Photoanodes for Photoelectrochemical Water Splitting. ChemElectroChem, 8, 125-134. https://doi.org/10.1002/celc.202001154 |
[16] | Zhang, N., Tan, F., Qi, L.J., An, J.R., Che, M.Q., Shi, Y.R., et al. (2023) Switchable Operating Modes Enable Low Power Consumption and Improved Gas Sensing Efficiency in MoS2/BP Heterojunction. Sensors and Actuators B: Chemical, 396, Article ID: 134620. https://doi.org/10.1016/j.snb.2023.134620 |
[17] | Yu, G.Y., Hu, J.W., Xiao, W., Zhu, Y.T. and Dai, Y. (2023) Fabrication of Black NiO/Sr2FeTaO6 Heterojunctions with Rapid Interface Charge Transfer for Efficient Photocatalytic Hydrogen Evolution. Frontiers in Chemistry, 10, Article ID: 1118540. https://doi.org/10.3389/fchem.2022.1118540 |
[18] | Alsalme, A., Al Fawaz, A., Glal, A.H., Abdel Messih, M.F., Soltan, A. and Ahmed, M.A. (2023) S-Scheme AgIO4/CeO2 Heterojunction Nanocomposite Photocatalyst for Degradation of Rhodamine B Dye. Journal of Photochemistry and Photobiology A. Chemistry, 439, Article ID: 114596. https://doi.org/10.1016/j.jphotochem.2023.114596 |
[19] | Zhang, C., Wu, K.D., Liao, H.L. and Debliquy, M. (2022) Room Temperature WO3-Bi2WO6 Sensors Based on Hierarchical Microflowers for Ppb-Level H2S Detection. Chemical Engineering Journal, 430, Article ID: 132813. https://doi.org/10.1016/j.cej.2021.132813 |
[20] | Kannan, S., Balasubramanian, V., Mohanraj, K. and Sivakumar, G. (2021) Preparation of H-WO3/CuWO4 Microsphere and Single Crystalline CuWO4 Nanoparticles and Their Electrocatalytic Activity. Vacuum, 191, Article ID: 110381. https://doi.org/10.1016/j.vacuum.2021.110381 |