[1] | Dunn, B., Kamath, H. and Tarascon, J.M. (2011) Electrical Energy Storagefor the Grid: A Battery of Choices. Science, 334, 928-935. https://doi.org/10.1126/science.1212741 |
[2] | Li, J.L., Daniel, C. and Wood, D. (2011) Materials Processing for Lithium-Ion Batteries. Journal of Power Sources, 196, 2452-2460. https://doi.org/10.1016/j.jpowsour.2010.11.001 |
[3] | Li, M., Lu, J., Chen, Z.W. and Amine, K. (2018) 30 Years of Lithium-Ion Batteries. Advanced Materials, 30, Article ID: 1800561. https://doi.org/10.1002/adma.201800561 |
[4] | Sun, Q., Ren, Q.Q., Li, H., et al. (2011) High CapacitySb2O4 Thin Film Electrodes for Rechargeable Sodium Battery. Electrochemistry Communications, 13, 1462-1464. https://doi.org/10.1016/j.elecom.2011.09.020 |
[5] | Xiang, X.D., Lu, Y.Y. and Chen, J. (2017) Advance and Prospect of Functional Materials for Sodium Ion Batteries. Acta Chimica Sinica, 75, 154-162. https://doi.org/10.6023/A16060275 |
[6] | Yabuuchi, Na., Kubota, K., Dahbi, M. and Komaba, S. (2014) Research Development on Sodium-Ionbatteries. Chemical Reviews, 114, 11636-11682. https://doi.org/10.1021/cr500192f |
[7] | Zhang, Y., Li, J., Zhang, H.L., et al. (2022) First-Principles Computational Studies on Na Diffusion in Li-Doped P3-Type NaMnO2 as Cathode Material for Na-Ion Batteries. Journal of Central South University, 29, 2930-2939. https://doi.org/10.1007/s11771-022-5137-z |
[8] | 龙云飞, 苏静, 吕小艳, 等. 锂/钠离子电池过渡金属氟磷酸盐正极材料研究进展[J]. 无机盐工业, 2020, 52(3): 28-34, 38. |
[9] | Peng, J., Zhang, W., Liu, Q.N., et al. (2022) Prussian Blue Analogues for Sodium-Ion Batteries: Past, Present, and Future. Advanced Materials, 34, Article ID: 2108384. https://doi.org/10.1002/adma.202108384 |
[10] | Barpanda, P., Lander, L., Nishimura, S.I. and Yamada, A. (2018) Polyanionic Insertion Materials for Sodium-Ion Batteries. Advanced Energy Materials, 8, Article ID: 1703055. https://doi.org/10.1002/aenm.201703055 |
[11] | Lan, Y.Q., Yao, W.J., He, X.L., et al. (2020) Mixed Polyanionic Compounds as Positive Electrodes for Low-Cost Electrochemical Energy Storage. Angewandte Chemie International Edition, 59, 9255-9262. https://doi.org/10.1002/anie.201915666 |
[12] | Peng, M.H., Li, B., Yan, H.J., et al. (2015) Ruthenium-Oxide-Coated Sodium Vanadium Fluorophosphate Nanowires as High-Power Cathode Materials for Sodium-Ion Batteries. Angewandte Chemie International Edition, 54, 6452-6456. https://doi.org/10.1002/anie.201411917 |
[13] | Zhao, L.N., Rong, X.H., Niu, Y.S., et al. (2020) Ostwald Ripening Tailoring Hierarchically Porous Na3V2(PO4)2O2F Hollow Nanospheres for Superior High-Rate and Ultrastable Sodium Ion Storage. Small, 16, Article ID: 2004925. https://doi.org/10.1002/smll.202004925 |
[14] | Cao, X.X., Pan, A.Q., Yin, B., et al. (2019) Nanoflake-Constructed Porous Na3V2(PO4)3/C Hierarchical Microspheres as a Bicontinuous Cathode for Sodium-Ion Batteries Applications. Nano Energy, 60, 312-323. https://doi.org/10.1016/j.nanoen.2019.03.066 |
[15] | Gu, Z.Y., Guo, J.Z., Cao, J.M., et al. (2022) An Advanced High-Entropy Fluorophosphate Cathode for Sodium-Ion Batteries with Increased Working Voltage and Energy Density. Advanced Materials, 34, Article ID: 2110108. https://doi.org/10.1002/adma.202110108 |
[16] | Yue, L.J., Peng, C., Guo, C.L., et al. (2022) Na3V2-XFex(PO4)2O2F: An Advanced Cathode Material with Ultra-High Stability for Superior Sodium Storage. Chemical Engineering Journal, 441, Article ID: 136132. https://doi.org/10.1016/j.cej.2022.136132 |
[17] | Gu, Z.Y., Guo, J.Z., Cao, J.M., et al. (2021) Aliovalent-Ion-Induced Lattice Regulation Based on Charge Balance Theory: Advanced Fluorophosphate Cathode for Sodium-Ion Full Batteries. Small, 17, Article ID: 2102010. https://doi.org/10.1002/smll.202102010 |
[18] | Mukherjee, A., Rosy, Sharabani, T., et al. (2020) High-Rate Na0.7Li2.3V2(PO4)2F3 Hollow Sphere Cathode Prepared via a Solvothermal and Electrochemical Ion Exchange Approach for Lithium Ion Batteries. Journal of Materials Chemistry A, 8, 21289-21297. https://doi.org/10.1039/D0TA07912J |
[19] | Yu, H., Gao, Y., Wang, J.J., et al. (2022) Potassium Doping towards Enhanced Na-Ion Diffusivity in a Fluorophosphate Cathode for Sodium-Ion Full Cells. Journal of Materials Chemistry A, 10, 22105-22113. https://doi.org/10.1039/D2TA05593G |
[20] | Monshi, A., Foroughi, M. and Monshi, M. (2012) Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD. World Journal of Nano Science and Engineering, 2, 154-160. https://doi.org/10.4236/wjnse.2012.23020 |