[1] | Kalluri, R. and LeBleu, V.S. (2020) The Biology, Function, and Biomedical Applications of Exosomes. Science, 367, eaau6977. https://doi.org/10.1126/science.aau6977 |
[2] | Selmaj, I., Cichalewska, M., Namiecinska, M., Galazka, G., Horzelski, W., Selmaj, K.W. and Mycko, M.P. (2017) Global Exosome Transcriptome Profiling Reveals Biomarkers for Multiple Sclerosis. Annals of Neurology, 81, 703-717. https://doi.org/10.1002/ana.24931 |
[3] | Barile, L. and Vassalli, G. (2017) Exosomes: Therapy Delivery Tools and Biomarkers of Diseases. Pharmacology & Therapeutics, 174, 63-78. https://doi.org/10.1016/j.pharmthera.2017.02.020 |
[4] | Cheng, N., Du, D., Wang, X., Liu, D., Xu, W., Luo, Y. and Lin, Y. (2019) Recent Advances in Biosensors for Detecting Cancer-Derived Exosomes. Trends in Biotechnology, 37, 1236-1254. https://doi.org/10.1016/j.tibtech.2019.04.008 |
[5] | Stobiecka, M., Ratajczak, K. and Jakiela, S. (2019) Toward Early Cancer Detection: Focus on Biosensing Systems and Biosensors for an Anti-Apoptotic Protein Survivin and Survivin mRNA. Biosensors and Bioelectronics, 137, 58-71. https://doi.org/10.1016/j.bios.2019.04.060 |
[6] | Drula, R., Ott, L.F., Berindan-Neagoe, I., Pantel, K. and Calin, G.A. (2020) MicroRNAs from Liquid Biopsy Derived Extracellular Vesicles: Recent Advances in Detection and Characterization Methods. Cancers, 12, Article 2009. https://doi.org/10.3390/cancers12082009 |
[7] | Cui, L., Peng, R.X., Zeng, C.F., Zhang, J.L., Lu, Y.Z., Zhu, L., Huang, M.J., Tian, Q.H., Song, Y.L. and Yang, C.Y. (2022) A General Strategy for Detection of Tumor-Derived Extracellular Vesicle MicroRNAs Using Aptamer-Mediated Vesicle Fusion. Nano Today, 46, Article 101599. https://doi.org/10.1016/j.nantod.2022.101599 |
[8] | Niu, Q., Gao, J., Zhao, K., Chen, X., Lin, X., Huang, C., An, Y., Xiao, X., Wu, Q., Cui, L., Zhang, P., Wu, L. and Yang, C. (2022) Fluid Nanoporous Microinterface Enables Multiscale-Enhanced Affinity Interaction for Tumor-Derived Extracellular Vesicle Detection. Proceedings of the National Academy of Sciences of the United States of America, 119, e2213236119. https://doi.org/10.1073/pnas.2213236119 |
[9] | Jet, T., Gines, G., Rondelez, Y. and Taly, V. (2021) Advances in Multiplexed Techniques for the Detection and Quantification of MicroRNAs. Chemical Society Reviews, 50, 4141-4161. https://doi.org/10.1039/D0CS00609B |
[10] | Wu, Y., Zhang, Y., Zhang, X., Luo, S., Yan, X., Qiu, Y., Zheng, L. and Li, L. (2021) Research Advances for Exosomal miRNAs Detection in Biosensing: From the Massive Study to the Individual Study. Biosensors and Bioelectronics, 177, Article 112962. https://doi.org/10.1016/j.bios.2020.112962 |
[11] | Ouyang, T., Liu, Z., Han, Z. and Ge, Q. (2019) MicroRNA Detection Specificity: Recent Advances and Future Perspective. Analytical Chemistry, 91, 3179-3186. https://doi.org/10.1021/acs.analchem.8b05909 |
[12] | Cheng, Y., Dong, L., Zhang, J., Zhao, Y. and Li, Z. (2018) Recent Advances in MicroRNA Detection. Analyst, 143, 1758-1774. https://doi.org/10.1039/C7AN02001E |
[13] | Zhou, S., Sun, H., Dong, J., Lu, P., Deng, L., Liu, Y., Yang, M., Huo, D. and Hou, C. (2023) Highly Sensitive and Facile MicroRNA Detection Based on Target Triggered Exponential Rolling-Circle Amplification Coupling with CRISPR/ Cas12a. Analytica Chimica Acta, 1265, Article 341278. https://doi.org/10.1016/j.aca.2023.341278 |
[14] | Cui, L., Lin, X., Lin, N., Song, Y., Zhu, Z., Chen, X. and Yang, C.J. (2012) Graphene Oxide-Protected DNA Probes for Multiplex MicroRNA Analysis in Complex Biological Samples Based on a Cyclic Enzymatic Amplification Method. Chemical Communications, 48, 194-196. https://doi.org/10.1039/C1CC15412E |
[15] | Jin, D., Yang, F., Zhang, Y., Liu, L., Zhou, Y., Wang, F. and Zhang, G.J. (2018) ExoAPP: Exosome-Oriented, Aptamer Nanoprobe-Enabled Surface Proteins Profiling and Detection. Analytical Chemistry, 90, 14402-14411. https://doi.org/10.1021/acs.analchem.8b03959 |
[16] | Wang, H., Chen, H., Huang, Z., Li, T., Deng, A. and Kong, J. (2018) DNase I Enzyme-Aided Fluorescence Signal Amplification Based on Graphene Oxide-DNA Aptamer Interactions for Colorectal Cancer Exosome Detection. Talanta, 184, 219-226. https://doi.org/10.1016/j.talanta.2018.02.083 |
[17] | Wu, Y., Cui, S., Li, Q., Zhang, R., Song, Z., Gao, Y., Chen, W. and Xing, D. (2020) Recent Advances in Duplex-Specific Nuclease-Based Signal Amplification Strategies for MicroRNA Detection. Biosensors and Bioelectronics, 165, Article 112449. https://doi.org/10.1016/j.bios.2020.112449 |
[18] | Lin, X.Y., Zhang, C., Huang, Y.S., Zhu, Z., Chen, X. and Yang, C.J. (2013) Backbone-Modified Molecular Beacons for Highly Sensitive and Selective Detection of MicroRNAs Based on Duplex Specific Nuclease Signal Amplification. Chemical Communications, 49, 7243-7245. https://doi.org/10.1039/c3cc43224f |
[19] | Li, Y., Zhang, J., Zhao, J., Zhao, L., Cheng, Y. and Li, Z. (2016) A Simple Molecular Beacon with Duplex-Specific Nuclease Amplification for Detection of MicroRNA. Analyst, 141, 1071-1076. https://doi.org/10.1039/C5AN02312B |
[20] | Gao, J.F., Li, Y., Li, W.Q., Zeng, C.F., Xi, F.N., Huang, J.H. and Cui, L. (2020) 2’-O-Methyl Molecular Beacon: A Promising Molecular Tool That Permits Elimination of Sticky-End Pairing and Improvement of Detection Sensitivity. RSC Advances, 10, 41618-41624. https://doi.org/10.1039/D0RA07341E |
[21] | Zheng, H.Y., Lin, Q.Y., Zhu, J.C., Rao, Y.M., Cui, L., Bao, Y.Y. and Ji, T.H. (2021) DNase I-Assisted 2’-O-Methyl Molecular Beacon for Amplified Detection of Tumor Exosomal MicroRNA-21. Talanta, 235, Article 122727. https://doi.org/10.1016/j.talanta.2021.122727 |
[22] | Sun, X., Ying, N., Ju, C., Li, Z., Xu, N., Qu, G., Liu, W. and Wan, J. (2018) Modified Beacon Probe Assisted Dual Signal Amplification for Visual Detection of MicroRNA. Analytical Biochemistry, 550, 68-71. https://doi.org/10.1016/j.ab.2018.04.010 |
[23] | Yin, B.C., Liu, Y.Q. and Ye, B.C. (2012) One-Step, Multiplexed Fluorescence Detection of MicroRNAs Based on Duplex-Specific Nuclease Signal Amplification. Journal of the American Chemical Society, 134, 5064-5067. https://doi.org/10.1021/ja300721s |
[24] | Tsourkas, A., Behlke, M.A. and Bao, G. (2002) Hybridization of 2’-O-Methyl and 2’-Deoxy Molecular Beacons to RNA and DNA Targets. Nucleic Acids Research, 30, 5168-5174. https://doi.org/10.1093/nar/gkf635 |
[25] | Wang, Y., Gao, X., Wei, F., Zhang, X., Yu, J., Zhao, H., Sun, Q., Yan, F., Yan, C., Li, H. and Ren, X. (2014) Diagnostic and Prognostic Value of Circulating miR-21 for Cancer: A Systematic Review and Meta-Analysis. Gene, 533, 389-397. https://doi.org/10.1016/j.gene.2013.09.038 |
[26] | Calin, G.A. and Croce, C.M. (2006) MicroRNA Signatures in Human Cancers. Nature Reviews. Cancer, 6, 857-866. https://doi.org/10.1038/nrc1997 |
[27] | Wang, Q., Yin, B.C. and Ye, B.C. (2016) A Novel Polydopamine-Based Chemiluminescence Resonance Energy Transfer Method for MicroRNA Detection Coupling Duplex-Specific Nuclease-Aided Target Recycling Strategy. Biosensors and Bioelectronics, 80, 366-372. https://doi.org/10.1016/j.bios.2016.02.005 |
[28] | Yang, C., Dou, B., Shi, K., Chai, Y., Xiang, Y. and Yuan, R. (2014) Multiplexed and Amplified Electronic Sensor for the Detection of MicroRNAs from Cancer Cells. Analytical Chemistry, 86, 11913-11918. https://doi.org/10.1021/ac503860d |
[29] | Yuan, Y.H., Chi, B.Z., Wen, S.H., Liang, R.P., Li, Z.M. and Qiu, J.D. (2018) Ratiometric Electrochemical Assay for Sensitive Detecting MicroRNA Based on Dual-Amplification Mechanism of Duplex-Specific Nuclease and Hybridization Chain Reaction. Biosensors and Bioelectronics, 102, 211-216. https://doi.org/10.1016/j.bios.2017.11.030 |
[30] | Wang, H., He, D., Wan, K., Sheng, X., Cheng, H., Huang, J., Zhou, X., He, X. and Wang, K. (2020) In situ Multiplex Detection of Serum Exosomal MicroRNAs Using an All-in-One Biosensor for Breast Cancer Diagnosis. Analyst, 145, 3289-3296. https://doi.org/10.1039/D0AN00393J |
[31] | Lee, J.H., Kim, J.A., Kwon, M.H., Kang, J.Y. and Rhee, W.J. (2015) In situ Single Step Detection of Exosome MicroRNA Using Molecular Beacon. Biomaterials, 54, 116-125. https://doi.org/10.1016/j.biomaterials.2015.03.014 |
[32] | Gao, Z., Yuan, H., Mao, Y., Ding, L., Effah, C.Y., He, S., He, L., Liu, L.E., Yu, S., Wang, Y., Wang, J., Tian, Y., Yu, F., Guo, H., Miao, L., Qu, L. and Wu, Y. (2021) In situ Detection of Plasma Exosomal MicroRNA for Lung Cancer Diagnosis Using Duplex-Specific Nuclease and MoS2 Nanosheets. Analyst, 146, 1924-1931. https://doi.org/10.1039/D0AN02193H |
[33] | Liu, H., Fan, J.L., Liu, W.P., Tong, C.Y., Xie, Z.H., Deng, R.L. and Long, X.Y. (2018) A Dual Signal Amplification Method for miR-204 Assay by Combining Chimeric Molecular Beacon with Double-Stranded Nuclease. Analytical Methods, 10, 5834-5841. https://doi.org/10.1039/C8AY02147C |
[34] | Xie, Y., Lin, X.Y., Huang, Y.S., Pan, R.J., Zhu, Z., Zhou, L.J. and Yang, C.Y.J. (2015) Highly Sensitive and Selective Detection of miRNA: DNase I-Assisted Target Recycling Using DNA Probes Protected by Polydopamine Nanospheres. Chemical Communications, 51, 2156-2158. https://doi.org/10.1039/C4CC08912J |
[35] | Tang, Y.F., Liu, M.X., Xu, L.C., Tian, J.N., Yang, X.L., Zhao, Y.C. and Zhao, S.L. (2018) A Simple and Rapid Dual-Cycle Amplification Strategy for MicroRNA Based on Graphene Oxide and Exonuclease III-Assisted Fluorescence Recovery. Analytical Methods, 10, 3777-3782. https://doi.org/10.1039/C8AY01106K |
[36] | Liu, M.X., Liang, S.P., Tang, Y.F., Tian, J.N., Zhao, Y.C. and Zhao, S.L. (2018) Rapid and Label-Free Fluorescence Bioassay for MicroRNA Based on Exonuclease III-Assisted Cycle Amplification. RSC Advances, 8, 15967-15972. https://doi.org/10.1039/C8RA01605D |
[37] | Wei, K.J., Zhao, J.J., Qin, Y.F., Li, S.T., Huang, Y. and Zhao, S.L. (2018) A Novel Multiplex Signal Amplification Strategy Based on Microchip Electrophoresis Platform for the Improved Separation and Detection of MicroRNAs. Talanta, 189, 437-441. https://doi.org/10.1016/j.talanta.2018.07.037 |
[38] | Bonnet, G., Tyagi, S., Libchaber, A. and Kramer, F.R. (1999) Thermodynamic Basis of the Enhanced Specificity of Structured DNA Probes. Proceedings of the National Academy of Sciences of the United States of America, 96, 6171-6176. https://doi.org/10.1073/pnas.96.11.6171 |
[39] | Lu, Y.Y., Wang, L. and Chen, H.Q. (2019) Turn-on Detection of MicroRNA155 Based on Simple UCNPs-DNA-AuNPs Luminescence Energy Transfer Probe and Duplex-Specific Nuclease Signal Amplification. Spectrochimica Acta Part A: Molecular Spectroscopy, 223, Article 117345. https://doi.org/10.1016/j.saa.2019.117345 |
[40] | Li, Y.T., Tang, D.H., Zhu, L., Cai, J.T., Chu, C.N., Wang, J., Xia, M., Cao, Z.Z. and Zhu, H. (2019) Label-Free Detection of miRNA Cancer Markers Based on Terminal Deoxynucleotidyl Transferase-Induced Copper Nanoclusters. Analytical Biochemistry, 585, Article 113346. https://doi.org/10.1016/j.ab.2019.113346 |
[41] | Liu, Q., Kang, P.J., Chen, Z.P., Shi, C.X., Chen, Y. and Yu, R.Q. (2019) Highly Specific and Sensitive Detection of MicroRNAs by Tandem Signal Amplification Based on Duplex-Specific Nuclease and Strand Displacement. Chemical Communications, 55, 14210-14213. https://doi.org/10.1039/C9CC06790F |
[42] | Degliangeli, F., Kshirsagar, P., Brunetti, V., Pompa, P.P. and Fiammengo, R. (2014) Absolute and Direct MicroRNA Quantification Using DNA-Gold Nanoparticle Probes. Journal of the American Chemical Society, 136, 2264-2267. https://doi.org/10.1021/ja412152x |
[43] | Tan, L., Xu, L., Liu, J.W., Tang, L.J., Tang, H. and Yu, R.Q. (2019) Duplex-Specific Nuclease-Mediated Target Recycling Amplification for Fluorescence Detection of MicroRNA. Analytical Methods, 11, 200-204. https://doi.org/10.1039/C8AY02265H |
[44] | Peng, W.P., Zhao, Q., Piao, J.F., Zhao, M., Huang, Y.W., Zhang, B., Gao, W.C., Zhou, D.M., Shu, G.M., Gong, X.Q. and Chang, J. (2018) Ultra-Sensitive Detection of MicroRNA-21 Based on Duplex-Specific Nuclease-Assisted Target Recycling and Horseradish Peroxidase Cascading Signal Amplification. Sensors and Actuators B: Chemical, 263, 289-297. https://doi.org/10.1016/j.snb.2018.02.143 |
[45] | Xiao, M.S., Chandrasekaran, A.R., Ji, W., Li, F., Man, T.T., Zhu, C.F., Shen, X.Z., Pei, H., Li, Q. and Li, L. (2018) Affinity-Modulated Molecular Beacons on MoS2 Nanosheets for MicroRNA Detection. ACS Applied Materials & Interfaces, 10, 35794-35800. https://doi.org/10.1021/acsami.8b14035 |
[46] | Wu, Z.F., Zhou, H., He, J., Li, M., Ma, X.M., Xue, J., Li, X. and Fan, X.T. (2019) G-Triplex Based Molecular Beacon with Duplex-Specific Nuclease Amplification for the Specific Detection of MicroRNA. Analyst, 144, 5201-5206. https://doi.org/10.1039/C9AN01075K |